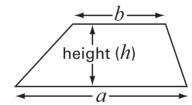
Instructions

Answers

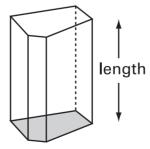
This means write down your answer or show your working and your answer.

Calculators



You **must not** use a calculator in this test.

Formulae


You might need to use these formulae.

Trapezium

Area =
$$\frac{(a+b)}{2} \times h$$

Prism

Volume = area of cross-section \times length

1. Here is the 65 times table.

1

$$\times$$
 65
 =
 65

 2
 \times
 65
 =
 130

 3
 \times
 65
 =
 195

 4
 \times
 65
 =
 260

 5
 \times
 65
 =
 325

 6
 \times
 65
 =
 390

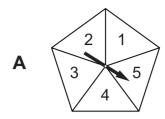

 7
 \times
 65
 =
 455

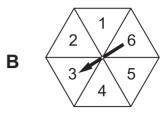
 8
 \times
 65
 =
 520

 9
 \times
 65
 =
 585

 10
 \times
 65
 =
 650

(a) Use the 65 times table to help you fill in the missing numbers.




(b) Use the 65 times table to help you work out 16 \times 65 Show how you do it.

. . . . 2 marks

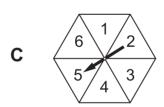
2. (a) The diagram shows spinner A and spinner B.

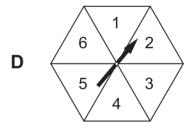
Which spinner gives you the best chance to get 1? Tick (✓) your answer.

\sim

spinner A

doesn't matter


Explain why you chose that answer.



1 mark

(b) Here are two different spinners.

The spinners are the same shape but different sizes.

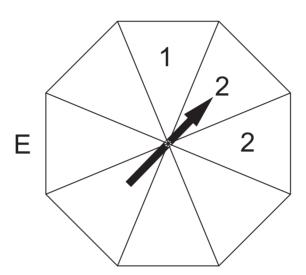
Which spinner gives you the best chance to get **3**? Tick (✓) your answer.

spinner C

spinner D	sp	inner	D
-----------	----	-------	---

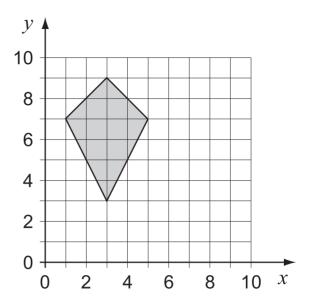
doesn't matter

Explain why you chose that answer.



(c) Each section of spinner E is the same size.Fill in numbers on spinner E so that **both** of these statements are true.

It is equally likely that you will spin 3 or 2


It is more likely that you will spin 4 than 2

. 2 marks

3. Look at the shaded shape.

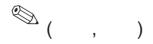
(a) Two statements below are correct.

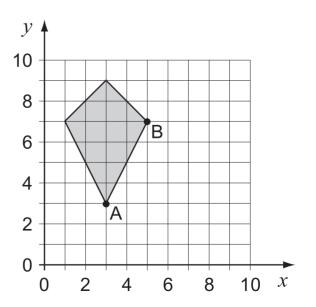
Tick the correct statements.

The shape is a quadrilateral.

The shape is a **trapezium**.

The shape is a **pentagon**.

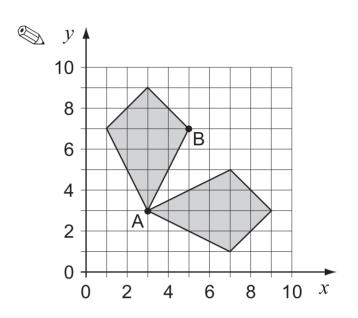

The shape is a **kite**.


The shape is a parallelogram.

				ı
				ı
				ı
				ı
				ı
				ı
_	_	_	_	۰

. . . . 1 mark

(b) What are the co-ordinates of point **B**?

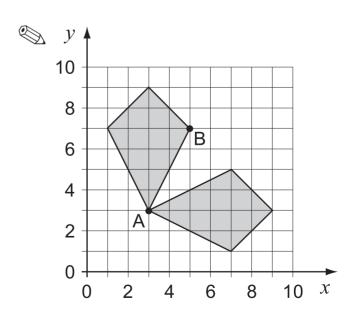


(c) The shape is **reflected** in a mirror line.

Point A stays in the same place.

Where is point **B** reflected to?

Put a cross on the grid to show the correct place.


. . . . 1 mark

(d) Now the shape is **rotated**.

Point A stays in the same place.

Where is point **B** rotated to?

Put a cross on the grid to show the correct place.

4.	Mark and James have the same	birthday.	
	They were born on 15th March i	n different years.	
(a)	Mark will be 12 years old on 15th		
	How old will he be on 15th Marc	h, 2010 ?	
		years old	 1 mark
(b)	In what year was Mark born?		
			 1 mark
(c)	James will be half of Mark's age In what year was James born?	e on 15th March, 2001	
			 1 mark

5. A pupil recorded how much rain fell on 5 different days.

_	_
Dacu	Itc:
Kesu	ILS.

	Amount in cm	
Monday	0.2	
Tuesday	0.8	
Wednesday	0.5	
Thursday	0.25	
Friday 0.05		

(a) Fill in the gaps with the correct day.

. . . . 1 mark

The **least** rain fell on

. . . . 1 mark

(b) How much **more** rain fell on Wednesday than on Thursday?

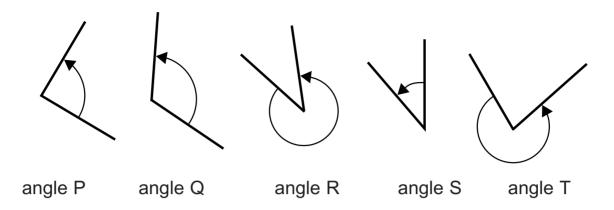
cm

. . . . 1 mark

(c) How much rain fell altogether on Monday, Tuesday and Wednesday?

cm

1 mark


Now write your answer in millimetres.

mm

. 1 mark

6. Look at these angles.

(a) One of the angles measures **120°**Write its letter.

. 1 mark

(b) Complete the drawing below to show an angle of 157°
 Label the angle 157°

. . . .

. 2 marks

(c) 15 pupils measured two angles.

Here are their results.

Angle A

Angle measured as	Number of pupils
36°	1
37°	2
38°	10
39°	2

Angle B

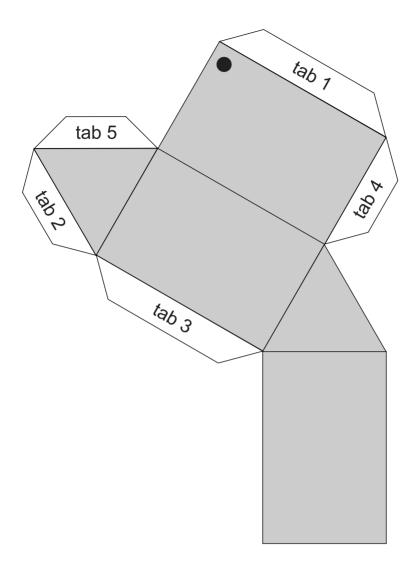
Angle measured as	Number of pupils
45°	5
134°	3
135°	4
136°	3

Use the results to decide what each angle is most likely to measure.

Angle **A** is °

How did you decide?

Angle **B** is °


How did you decide?

. . . . 1 mark

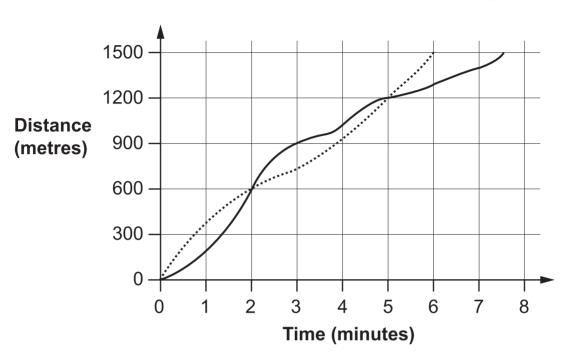
7. The sketch shows the net of a triangular prism.

The net is folded up and glued to make the prism.

(a) Which edge is tab 1 glued to?On the diagram, label this edge A

(b) Which edge is **tab 2** glued to? Label this edge B

. . . . 1 mark


(c) The corner marked ● meets two other corners.Label these two other corners ●

8. Maria and Kay ran a 1500 metres race.

The distance-time graph shows the race.

..... Maria

---- Kay

Use the graph to help you fill in the gaps in this report of the race.

Ju

Just after the start of the race, Maria was in the lead.

At 600 metres, Maria and Kay were level.

Then Kay was in the lead for minutes.

At metres, Maria and Kay were level again. ...

.... won the race.

Her total time was minutes.

. finished minutes later.

9. The table shows some percentages of amounts of money.

	£10	£30	£45
5%	50p	£1.50	£2.25
10%	£1	£3	£4.50

You can use the table to help you work out the missing numbers.

10.

Museum

entrance fee £1.20 per person

(a) 240 people paid the entrance fee on Monday.How much money is that altogether?Show your working.

£

2 marks

(b) The museum took £600 in entrance fees on Friday.
How many people paid to visit the museum on Friday?
Show your working.

. . . .

. people _{2 marks}

11. Write each expression in its simplest form.

7 + 2t + 3t

. . . . 1 mark

$$b + 7 + 2b + 10$$

. . . . 1 mark

$$(3d + 5) + (d - 2)$$

. . . 1 mark

$$3m - (-m)$$

. 1 mork

2. (a)	They add together to make 2	
	What are the two numbers?	
	and	 1 mark
(b)	Two numbers multiply together to make –15 , but add together to make –2	
	What are the two numbers?	
	and	 1 mark
(c)	Two numbers multiply together to make 8 , but add together to make -6	
	What are the two numbers?	
	and	 1 mark
(d)	The square of 5 is 25 The square of another number is also 25	
	What is that other number?	
		 1 mark

There are some cubes in a bag.
The cubes are either red (R) or black (B).

The teacher says:

If you take a cube at random out of the bag, the probability that it will be red is $\frac{1}{5}$

(a) What is the probability that the cube will be black?

(b) A pupil takes one cube out of the bag. It is red.

What is the **smallest** number of **black** cubes there could be in the bag?

(c) Then the pupil takes another cube out of the bag. It is also red.

From this new information, what is the **smallest** number of **black** cubes there could be in the bag?

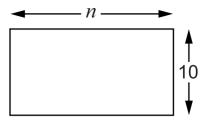
(d) A different bag has **blue** (B), **green** (G) and **yellow** (Y) cubes in it. There is at least one of each of the three colours.

The teacher says:

If you take a cube at random out of the bag, the probability that it will be **green** is $\frac{3}{5}$

There are 20 cubes in the bag.

What is the **greatest** number of yellow cubes there could be in the bag?


Show your working.

14. Jenny and Alan each have a rectangle made out of paper.

One side is 10cm.

The other side is n cm.

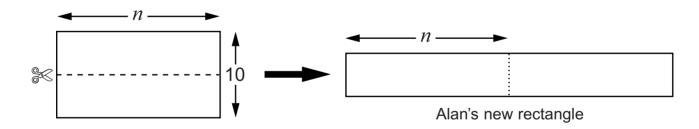
(a) They write expressions for the **perimeter** of the rectangle.

Jenny writes 2n + 20

Alan writes 2(n + 10)

Tick (✓) the true statement below.

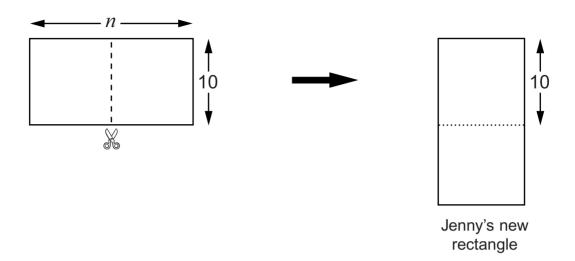
Jenny is correct and Alan is wrong.


Jenny is wrong and Alan is correct.

Both Jenny and Alan are correct.

Both Jenny and Alan are wrong.

(b) Alan cuts his rectangle, then puts the two halves side by side.

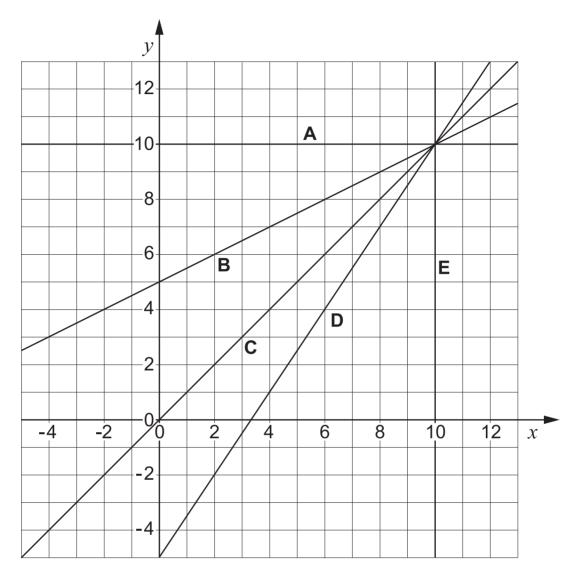

What is the perimeter of Alan's new rectangle? Write your expression as simply as possible.

. . .

2 marks

(c) Jenny cuts her rectangle a different way, and puts one half below the other.

What is the perimeter of Jenny's new rectangle? Write your expression as simply as possible.


. . . .

. . . . 2 marks

(d) What value of *n* would make the perimeter of Jenny's new rectangle the **same value** as the perimeter of Alan's new rectangle?

15. These straight line graphs all pass through the point (10, 10)

Fill in the gaps to show which line has which equation.

line has equation x = 10

line has equation y = 10

line has equation y = x

line has equation $y = \frac{3}{2}x - 5$

line has equation $y = \frac{1}{2}x + 5$

. . . .

2 marks

END OF TEST