Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education
Mathematics C (Graduated Assessment)
1966/2340A
MODULE M10 - SECTION A

Specimen Paper 2003

Candidates answer on the question paper.
Additional materials:
Geometrical instruments
Tracing paper (optional)
TIME 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- There is a space after most questions. Use it to do your working. In many questions marks will be given for correct working even if the answer is incorrect.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total mark available for this section is 25 .

For Examiner's use only	
Section A	
Section B	
Total	

WARNING
You are not allowed to use a calculator in Section A of this paper.

FORMULA SHEET: HIGHER TIER

Volume of prism $=($ area of cross section $) \times$ length

In any triangle ABC

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation

The solution of $a x^{2}+b x+c=0$ where $a \neq 0$, area given by $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

1 Find an equation connecting x and y for the following table of values.

X	4	9	16	25
y	4	6	8	10

2 This is a sketch of the graph of $y=\cos 2 x$.

On the same axes, sketch the graph of $y=\frac{1}{2} \cos x$.
(a) $\mathrm{r}=3+\sqrt{5}$ and $\mathrm{s}=3-\sqrt{5}$.

Work out the exact value of $r-s$.
(a)
(b) Find the exact value of $(\sqrt{3}+\sqrt{27})^{2}$
(b)

4 Write each of the following as a single fraction as simply as possible.
(a) $\frac{f}{g h}-\frac{g}{f h}$
(a)
(b) $\frac{y^{\frac{1}{2}}}{x^{-3}} \div \frac{x^{2}}{y^{\frac{3}{2}}}$
(b)

5 This diagram shows the graph of the function $y=\mathrm{f}(x)$.

On the axis below draw sketch graphs of each of the following functions.
(a) $y=\mathrm{f}(x+2)$
[1]
(b) $y=\mathrm{f}(x)+2$
[1]

(c) $\quad y=2 \mathrm{f}(x)$
[1]

(d) $\quad y=\mathrm{f}(2 x)$
[1]

6 These diagrams are not to scale.

Which triangle is congruent to the shaded triangle A ?
Explain how you decided.

Triangle \qquad because \qquad
\qquad
\qquad

7 By completing the square, find the co-ordinates of the minimum point of $y=x^{2}+8 x+7$.
 ,
)

8 This graph shows the three year moving average of an insurance policy.

The value of the policy was $£ 13400$ in 2001 and $£ 17600$ in 2002.

Estimate the value of the policy in 2003.
\qquad

Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education
Mathematics C (Graduated Assessment)
1966/2340B
MODULE M10 - SECTION B

Specimen Paper 2003

Candidates answer on the question paper.
Additional materials:
Geometrical instruments
Tracing paper (optional)
Scientific or graphical calculator
TIME 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- There is a space after most questions. Use it to do your working. In many questions marks will be given for correct working even if the answer is incorrect.

INFORMATION FOR CANDIDATES

- You are expected to use a calculator in section B of this paper.

- The number of marks is given in brackets [] at the end of each question or part question.
- The total mark available for this section is 25 .

FORMULA SHEET: HIGHER TIER

Volume of prism $=($ area of cross section $) \times$ length

In any triangle ABC
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation

The solution of $a x^{2}+b x+c=0$ where $a \neq 0$, area given by $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

It is estimated that the number of rabbits on Warren Island is decreasing at the rate of 12% per year.
In 2002 the number of rabbits was 308 .
(a) How many rabbits were there in 2000 ?
(a)
(b) In which year will there first be less than 180 rabbits?
(b)

10 Simplify.

$$
\sqrt{p^{4} q^{-2}} \times \sqrt{\frac{q^{6}}{p^{-2}}}
$$

11 The diagram shows the plan of a triangular field.
(a) Calculate the length of side AC.

(a) \qquad m
(b) Calculate the area of the field.

Give your answer to an appropriate degree of accuracy.
(b) m^{2} [3]

12 (a) Solve this equation.

$$
\frac{3}{x+2}=\frac{4}{x}
$$

(a) $x=$ \qquad [3]
(b) Solve the equation $x^{2}-3 x-5=0$

Give your answers correct to 2 decimal places.
(b) $x=$

13 The graphs show the results of 700 candidates in their English and Mathematics examinations.

(a) Without doing any calculations, comment on the performance of the candidates in the two examinations.

Your comments must indicate how you used the two graphs.
\qquad
\qquad
\qquad
\qquad
(b) Jack is a little below average in both subjects.

Say, with a reason, in which exam he is likely to have scored fewer marks.
\qquad
\qquad
\qquad

14 The cone in Figure 1 has a slant height of 8 cm and a base radius of 5 cm .

Figure 1

Figure 2

The cone is made from a sector of a circle [see Figure 2].

Calculate the angle, θ, at the centre of the sector.

$$
\theta=
$$ o

RECOGNISING ACHIEVEMENT

Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education
Mathematics C (Graduated Assessment) 1966/2340
MODULE M10

MARK SCHEME

Specimen Paper 2003

SECTION A

1	$y=2 \sqrt{x}$ or equivalent.		2	M1 for $y \propto \sqrt{x}$ or $x \propto y^{2}$.
			2	
2		half amplitude of original	1	
		half frequency of original	1	
			2	
3	(a)	$2 \sqrt{5}$	1	
	(b)	48	2	M1 for $3+27+$ $2 \sqrt{3} \sqrt{27}$ o.e.
			3	
4	(a)	$\underline{f^{2}-g^{2}}$	3	M2 for $\quad f^{2} h-g^{2} h$ o.e.
		$f g h$		fgh^{2}
				M1 for den of fgh or fgh^{2}
	(b)	$x y^{2}$	2	M1 for $x^{3} y^{\frac{1}{2}} \times \frac{y^{\frac{3}{2}}}{x^{2}}$ seen
			5	
5		trans 2 to L	1	
	(b)	trans 2 up	1	
	(c)	stretch x 2 , up	1	
	(d)	stretch $\mathrm{x} 1 / 2$, horizontal	1	
			4	
6		R	M1	
		$\text { RHS } 10 \cos 60=5$	$\mathbf{M 1}+\mathbf{A 1}+\mathbf{A 1}$	No marks in (b) if (a) is wrong.
		AAS \angle in $\mathrm{R}=$ invcos $1 / 2=60$	$\mathbf{M 1}+\mathbf{A 1}+\mathbf{A 1}$	
		$\begin{gathered} \text { SAS A: } 10 \cos 60=1 / 2 \\ \text { R: invcos } 1 / 2=60 \end{gathered}$	$\begin{gathered} \mathbf{M} 1+\mathbf{A} 1 \\ +\mathbf{A} 1 \end{gathered}$	
		SSS A: $10 \cos 60=5$ and 'base	M1	
		$=8.66$ via pythag	+ A1	
		R: 8.66 via pythag	+ A1	
			4	
7		$(-4,-9)$	2	M1 for $\mathrm{y}=(\mathrm{x}+4)^{2}-9$ W1 for -4 or -9 .
			2	
8		20000	3	M1 for $2003 \mathrm{ma}=17000$ (or f.t)
				M1 for their $17000=$
			3	$\frac{x+13400+17600}{3}$

Section A Total: $\mathbf{2 5}$

SECTION B

\begin{tabular}{|c|c|c|c|c|}
\hline 9 \& \& 397 or 398 \& 2 \& M1 for sight of \(0.88^{2}\) \\
\hline \& (b) \& 2007 \& \[
\begin{aligned}
\& 2 \\
\& 4
\end{aligned}
\] \& M1 for \(308 \times 0.88^{n}\) for \(\mathrm{n}=\) two of \(2,3,4\), and 5 \\
\hline 10 \& \& \(p^{3} q^{2}\) \& \[
\begin{aligned}
\& 2 \\
\& 2
\end{aligned}
\] \& M1 for one term correct \\
\hline 11 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \[
177.8(\ldots) \text { or } 178
\]
\[
5500 \text { or } 5520
\] \& \begin{tabular}{l}
\[
2
\] \\
3 \\
5
\end{tabular} \& \begin{tabular}{l}
M1: \(b^{2}=105^{2}+112^{2}-\) \\
2.105.112 \(\cos 110\) implied \\
by \(\mathrm{b}^{2}=31612\).(...) \\
M2 for 5525. (...) \\
M1 for \(1 / 2.105 .112 . \sin 110\)
\end{tabular} \\
\hline 12 \& (a)
(b) \& \(x=-8\)
4.19 and -1.19 \& 3
3

6 \& | M1 for $3 \mathrm{x}=4(\mathrm{x}+2)$ or M 2 for $3 \mathrm{x}=4 \mathrm{x}+8$ |
| :--- |
| M1 for $\frac{3 \pm \sqrt{29}}{2}$ or better |
| M2 for 4.192... and -1.192... |

\hline 13 \& (a)

(b) \& | M mean higher as peak to right M more varied |
| :--- |
| E as average lower | \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
1 \\
1 \\
4
\end{gathered}
$$
\] \& acc mode/ median/ mean

\hline 14 \& \& 225 \& 4

4 \& | M1 for circ $=31.00-31.42$ |
| :--- |
| M3 for $\frac{\theta}{360} \times 2 \pi 8=2 \pi 5$ |
| (but only M2 if = range above) |
| M3 for ans in range 223 227 |

\hline
\end{tabular}

Section B Total: 25

Total mark available: 50

MODUEE: M10				$\begin{gathered} 7 \\ \mathrm{~N} \end{gathered}$	Man A	6 nMan A	14		3 UA1	2$U A 2$	$\begin{gathered} 2 \\ \hline \mathrm{UA} 3 \end{gathered}$	7Multi-s		Acc	Grades		
Question	Topic	Syll Ref	Mod Ref												B	A	A*
1	Fit data to formula	$2 / 5 \mathrm{~g}$	A10.1			2											2
2	Trig graph	$3 / 2 \mathrm{~g}$	S10.4				2									2	
3	Simplify surds	$3 / 3 \mathrm{n}$	N10.2	3												3	
4	Simplify algebraic formula	2/5b	A10.2		5												5
5	Transform graph	2/6g	A10.5			4											4
6	Congruency	3/2e,3/1e,3/1f	S10.2				4			1	2						4
7	Completing square	2/5k	A10.3		2												2
8	Time series	4/5b,4/1a	D10.2					3	3			3					3
	Section A total			3	7	6	6	3	3	1	2	3				5	20
9	Exponential growth	2/3t	N10.1	4													4
10	Simplify powers	3/5d	A10.2		2												2
11	Cosine rule, area of triangle	$3 / 2 \mathrm{~g}$	S10.3				5							1			5
12a	Manipulate fractions	2/5b	A10.2		3												3
12b	Quadratic formula	2/5k	A10.2		3												3
13	Compare data sets	4/5d,4/1c,4/1d	D10.1					4		2	2					4	
14	Cone	3/2i,3/1b	S10.1				4		4			4					4
	Section B total			4	8		9	4	4	2	2	4		1		4	21
	Total			7	15	6	15	7	7	3	4	7		1		9	41

