Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education
Mathematics C (Graduated Assessment)
MODULE M6 - SECTION A

Specimen Paper 2003

Candidates answer on the question paper.

Additional materials:

Geometrical Instruments
Tracing Paper (optional)
TIME 30 minutes.

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- There is a space after most questions. Use it to do your working. In many questions marks will be given for a correct method even if the answer is incorrect.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this section is 25 .

For Examiner's Use	
Section A	
Section B	
Total	

You are not allowed to use a calculator in Section A of this paper.

FORMULA SHEET: FOUNDATION TIER

Area of trapezium $=\frac{1}{2}(a+b) h$

1 Enlarge this shape using a scale factor of 3.
Use C as the centre of enlargement.

2 The expression $n^{2}+n+17$ generates prime numbers for some values of n.
Substitute these numbers into this expression.
(a) $n=4$
\qquad
(a)
(b) $n=-3$
(b)

3 Solve these equations.
(a) $3 x+2=2 x+5$
(a) $x=$ \qquad
(b) $2(x+3)=15$
(b) $x=$

4 Here are two sets of cards, one set white and the other set grey.

A card is chosen at random from each set.
(a) Complete this table listing all the possible outcomes.

You will not need to use all the spaces.

White Card	Grey Card
A	A
A	B

(b) What is the probability of choosing two cards with the same letter?
(b)
(c) What is the probability of choosing two cards with different letters?
(c)

5 (a) This rectangle has area $2(a+3 b)$.

Multiply out $2(a+3 b)$.
(a)
(b) This rectangle has area $3 a+12$.

The width of the rectangle is 3 .

Write down an expression for the length of the rectangle.
(b)
$6 \quad \mathrm{ABCDE}$ is a regular pentagon.

Calculate the size of angle x
Give reasons for your answer.
$x=$ \qquad because \qquad
\qquad
\qquad
\qquad
\qquad

7 Calculate
(a) $\frac{3}{8} \times \frac{1}{2}$,
(a)
(b) $\frac{3}{8} \div 6$.
(b)

8 This table shows the temperature, in degrees Celsius, in some cities.

Amsterdam	-7
Athens	5
Paris	2
Manchester	3
Geneva	

(a) How many degrees warmer was it in Paris than Amsterdam?
(a)
(b) In Geneva it was 7 degrees colder than in Paris.

What was the temperature in Geneva?
(b) ${ }^{\circ} \mathrm{C}[1]$

Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education
Mathematics C (Graduated Assessment)
MODULE M6 - SECTION B
1966/2336B

Specimen Paper 2003
Candidates answer on the question paper.
Additional materials:
Geometrical Instruments
Tracing Paper (optional)
Electronic Calculator
TIME 30 minutes.

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- There is a space after most questions. Use it to do your working. In many questions marks will be given for a correct method even if the answer is incorrect.

INFORMATION FOR CANDIDATES

- You are expected to use a calculator in Section B of this paper.
- The number of marks is given in brackets [] at the end of each

For Examiner's Use	
Section B	

- The total number of marks for this section is 25 .

FORMULA SHEET: FOUNDATION TIER

Area of trapezium $=\frac{1}{2}(a+b) h$

9 Ancient coins were made of electrum.
Electrum is a mixture of gold and silver in the ratio 4:1.
(a) What is the weight of gold in an electrum coin weighing 20 g ?

(a) g[2]
(b) Ancient medals were made of a different mixture of gold and silver. 55% of this mixture was gold.

Write down the ratio of gold to silver in this mixture.
Give your answer in its simplest form.
(b) \qquad : \qquad [2]

10 This sketch shows what happens to the volume of water in a bath.

At the start the plug was put in and the cold tap was turned on fully.
(a) What happened at A?
\qquad
\qquad
(b) What happened at C ?
\qquad
\qquad

11 Amy wants to compare daily temperatures in Birmingham and Cape Town for 12 days. This table shows the temperatures.

Temperature in Cape Town $\left({ }^{\circ} \mathrm{C}\right)$	26	26	25	22	19	18	17	18	18	21	23	24
Temperature in Birmingham $\left({ }^{\circ} \mathrm{C}\right)$	5	6	9	12	16	19	20	20	17	13	9	6

The first six points have been plotted on the scatter diagram below.
(a) Plot the last six points.

(b) What does the diagram show about the relationship between the temperature in Birmingham and the temperature in Cape Town?
\qquad
\qquad
\qquad
\qquad

12 (a) Calculate, correct to 2 decimal places.

$$
\frac{1}{3.4+2.01}
$$

(a)
(b) Calculate.

$$
\frac{4 \cdot 9^{2}-3 \cdot 1^{2}}{3 \cdot 7}
$$

(b)

13 The Barringer Crater in Arizona is circular.
It has a diameter of 1.6 km .

Calculate the circumference of the Barringer Crater.

The diagram shows triangle ABC .
(a) Construct triangle ABC in the space below. The side AC has been drawn for you.
(b) Measure the size of angle C.
(b)

15 John and Peter did some gardening.
They shared the money they were paid in the ratio of the number of hours they worked.
John worked for 5 hours.
Peter worked for 7 hours.

They were paid a total of $£ 28.80$.
How much did they each receive?

John \qquad

Peter $£$ \qquad [1]

16 A holiday company offers a discount of 5%.
Michael booked a holiday.
The full cost of the holiday was $£ 910$.
How much did Michael pay after the discount?

17 ABCD is a rectangle measuring 4 cm by 7 cm .
Work out the area of the grey triangle.

Oxford Cambridge and RSA Examinations
 General Certificate of Secondary Education
 Mathematics C (Graduated Assessment)
 1966/2336
 MODULE M6

MARK SCHEME
Specimen Paper 2003

SECTION A

1 Correct enlargement
W3
W2 for correct enlargement in the wrong place
M1 for evidence of use of centre
[3]

2	(a) 37	W1	
	(b) 23	W2	W1 for $9-3+17$ seen
		[3]	
3	(a) 3	W2	M1 for $3 x-2 x=5-3$
	(b) 4.5	W2	M1 for $2 x+6=15$
		[4]	
4	(a) Correct table	W1	
	(b) $\frac{1}{4}$ or 0.25 or 25%	W1	
	(c) $\frac{3}{4}$ or 0.75 or 75%	$\begin{aligned} & \text { W2 } \\ & {[4]} \end{aligned}$	M1 for $1-\frac{1}{4} \mathrm{f} . \mathrm{t}$
5	(a) $2 a+6 b$	W1	
	(b) $a+4$	W2	M1 for $(3 a+12) \div 3$
		[3]	
6	72°		W2 for 72° with no reasoning
			Or M1 ABE isosceles
			$\mathrm{M} 1 \angle \mathrm{AEB}=36^{\circ}$
		[4]	M1 $\angle \mathrm{BED}=108-36$
			A1 72°

7	(a) $\frac{3}{16}$	W 1
	(b) $\frac{1}{16}$	W 1
8	(a) 9	[2]
	(b) ${ }^{-5}$	W 1

Total for Section A: 25

SECTION B

9			
			M1 for $20 \div$
	(b) $11: 9$	W2	W1 for 55:45
		[4]	
10	(a) Hot water on	W1	
	(b) Plug pulled out	W1	
		[2]	
11	(a) 6 points plotted correctly	W2	W1 for 4 correct
	(b) (Negative) correlation or equivalent	W1	
		[3]	
12	(a) $0 \cdot 18$	W2	W1 for 0.1848 .
	(b) 3.89	W2	W1 for 14.4 seen
		[4]	
13	5 (.0.....)	W2	M1 for $\pi \times 1.6$
		[2]	
14	(a) Correct triangle	W1	Allow $\pm 0.1 \mathrm{~cm}$ and $\pm 1^{\circ}$
	(b) 35 to 37	W1	
		[2]	
15	12 and 16.80	W2	M1 for $28.8 \div 12$
		[2]	
16	864.50	W2	M1 for 0.95×910
		[2]	
17	$11 \mathrm{~cm}^{2}$	W4	M3 for $28-(6+4+7$ ((or 11) or
			M2 for 2 correct areas seen or
			M1 for use of formula for the area of a triangle
		[4]	

Total for Section B: 25

Total mark available: 50

MODULE: M6				16	7	5	14	7	3	2	2	5			Grades		
Question	Topic	Syll Ref	Mod Ref	N	Man A	NMan A	SSM	HD	$\begin{aligned} & \text { UA } \\ & 1 \end{aligned}$	UA2	UA3	Multi-s	Units	Acc	F	E	D
1	Enlargement	F3/3c	S6.6				3										3
2	Substitution	F2/5c	A6.3			3											3
3	Equation	F2/5e	A6.2		4												4
4	Probability	F4/4f	D6.1,D5.1					4								4	
5	Brackets	F32/5b	A6.1		3												3
6	Polygons	F3/2c,2g,1j	S6.1				4				3	4					4
7	Fractions	F2/3d	N6.4	2												2	
8	Directed numbers	F2/3a	N6.5	2												2	
	Section A Total			4	7	3	7	4			3	4				8	17
9	Ratio	F2/2f,3f	N6.3	4													4
10	Graphs	F2/1e, 6c	A6.5			2				2						2	
11	Scatter diagrams	F4/4a,5b,1e	D6.2					3		1							3
12	Use of calculator	F2/3o	N6.1	4													4
13	Circumference	F3/4h	S6.2				2										2
14	Construction	F3/4d	S6.3				2									2	
15	Division in ratio	F2/2f,3f	N6.3	2													2
16	Percentages	F2/3m	N6.2	2													2
17	Areas	F3/4f,1b	S6.4				4		3			4	1				4
	Section B Total			12		2	8	3	3	3		4	1			4	21
	Total			16	7	5	15	7	3	3	3	8	1			12	38

