## Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education
Mathematics C (Graduated Assessment)
1966/2337A
MODULE M7 SECTION A

## Specimen Paper 2003

Candidates answer on question paper.
Additional materials:
Geometrical Instruments
Tracing Paper (optional)

TIME 30 minutes


## INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- There is a space after most questions. Use it to do your working. In many questions marks will be given for correct working even if the answer is incorrect.


## INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [ ] at the end of each question or part question.
- The total number of marks for this section is 25 .

| For Examiner's Use |  |
| :---: | :---: |
| Section A |  |
| Section B |  |
| Total |  |

## WARNING

You are not allowed to use a calculator in Section A of this paper.

Area of trapezium $=\frac{1}{2}(a+b) h$


Volume of prism $=($ area of cross section $) \times$ length


1 An examination consists of two parts, a written paper and a piece of coursework.


The written paper marks and the coursework marks for 10 candidates are shown on the scatter diagram below.
(a) Comment on the relationship between the marks on the written paper and coursework.
$\qquad$
$\qquad$
(b) Sajid scored 22 on the coursework but missed the written paper.

Draw a line of best fit on the scatter diagram and use it to estimate his mark on the written paper.
(b)

2 Pat is fixing a new lamp to the ceiling.
The diagram shows the ceiling drawn to a scale of 2 cm to 1 m .


## Scale: $\mathbf{2 c m}$ to $\mathbf{1 m}$

The lamp must be:
(a) not more than 4 m from D ,
(b) nearer BC than AD .

On the diagram shade the region where Pat can fix the lamp.
Show all your construction lines.

3 A formula which connects the number of sides and the sum of the angles of a polygon is

$$
S=180 n-360
$$

Rearrange the formula to make $n$ the subject.
$n=$

4 (a) Complete the table of values for $y=8 x-x^{2}$.

| $x$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ |  | 7 | 12 |  |  | 15 | 12 | 7 | 0 |

(b) On the axes below draw the graph of $y=8 x-x^{2}$.

(c) Use your graph to solve the equation $8 x-x^{2}=6$
(c) $x=$

5 The diagram shows a circle.
AC is a diameter of the circle and CD is a tangent.


Work out the size of $x$.
Give reasons for your answer.
$\qquad$ ${ }^{\circ}$ because $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

6 Two of these calculations are wrong.
Which two are wrong?
Explain how you can tell that they are wrong without doing the calculation.
(a) $15 \times 1 \cdot 7=25.5$
(b) $0 \cdot 6 \times 12=21$
(c) $27 \div 45=0.6$
(d) $25 \div 18=0.8$

Part $\qquad$ is wrong because $\qquad$
$\qquad$
$\qquad$

Part $\qquad$ is wrong because $\qquad$
$\qquad$

7 Solve these equations.
(a) $4(x-2)=18$
(a) $x=$
(b) $\frac{1}{3} x+\frac{1}{2} x=10$
(b) $x=$ $\qquad$
(c) $7 x-4=2 x+11$
(c) $x=$

## Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education
Mathematics C (Graduated Assessment)
1966/2337B
MODULE M7-SECTION B

## Specimen Paper 2003

Candidates answer on question paper.
Additional materials:
Geometrical Instruments
Tracing Paper (optional)
Scientific or Graphical Calculator
TIME 30 minutes.


## INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- There is a space after most questions. Use it to do your working. In many questions marks will be given for correct working even if the answer is incorrect.


## INFORMATION FOR CANDIDATES

- You are expected to use a calculator in Section B of this paper
- The number of marks is given in brackets [ ] at the end of each question or part question.

| For Examiner's Use |  |
| :---: | :--- |
| Section <br> B |  |

- The total number of marks for this Section is 25 .

Area of trapezium $=\frac{1}{2}(a+b) h$


Volume of prism $=($ area of cross section $) \times$ length

(a) $\frac{15 \cdot 67-3 \cdot 97}{4 \cdot 4-\frac{1}{2 \cdot 5}}$,
(a)
(b) $2 \cdot 5^{3}-1 \cdot 6^{2} \times 4 \cdot 75$.
(b)
(a)
$\operatorname{mph}[1]$
(b) He drives to Cambridge at an average speed of 57 mph .

The journey takes 3 hours 20 minutes.
How many miles is the journey?
(b) $\qquad$ miles [2]

10 (a) Find the integer values of $n$ which satisfy the inequality

$$
7<5 n<34
$$

(a) $n=$ $\qquad$ [2]
(b) Solve the inequality

$$
5 x-2<18
$$

(b) $\qquad$


11 Michelle keeps a record of the number of minutes her train is late each day. The table shows her results for a period of 50 days.

| Number of minutes late $(t)$ | Frequency |
| :---: | :---: |
| $0 \leq \mathrm{t}<10$ | 24 |
| $10 \leq \mathrm{t}<20$ | 12 |
| $20 \leq \mathrm{t}<30$ | 7 |
| $30 \leq \mathrm{t}<40$ | 2 |
| $40 \leq \mathrm{t}<50$ | 3 |
| $50 \leq \mathrm{t}<60$ | 2 |

Calculate an estimate of the mean number of minutes late.

12 Mary, Catherine and Rosemary have been left $£ 24750$ by their Grandmother. The money is to be shared between them in the ratio of their ages.

Mary is 18 years old, Catherine is 15 and Rosemary is 12.
How much more does Mary get than Rosemary?
$£$ $\qquad$

13 The amount of petrol used by Christine's car is directly proportional to the distance travelled.
When she travelled 132 miles she used 15 litres of petrol.
(a) On Monday she drove 231 miles.

How much petrol did she use?
(a) $\qquad$ litres [2]
(b) On Tuesday she used 12.25 litres of petrol.

How many miles did she drive?
(b) miles [2]

14 A ladder $3 \cdot 60 \mathrm{~m}$ long rests against a vertical wall.

The top of the ladder is 3.35 m above the horizontal ground.


Calculate the distance, $x$ metres, of the bottom of the ladder from the wall.
Give your answer to a sensible degree of accuracy.
$x=$ $\qquad$ m[4]


15 Write 30 as the product of prime numbers.
$30=$

Oxford Cambridge and RSA Examinations
General Certificate of Secondary Education

Mathematics C (Graduated Assessment)
1966/2337
MODULE M7
MARK SCHEME
Specimen Paper 2003

## SECTION A

1 (a) Positive correlation or equivalent statement
(b) Line of best fit drawn

58 to 62

2 Arc centre $D$ radius 8 cm
[1] Allow $\pm 0.2 \mathrm{~cm}$
Correct shading
Perpendicular bisector of AB and CD drawn
first step
$3 \mathrm{n}=\frac{S+360}{180}$
[2] M1 for correct
[2]
$4 \quad$ (a) $0,15,16$
[1]
(b) 8 points plotted to within 0.5 mm
[1]
Smooth curve through the plotted points
(c) 0.8 to 0.9 and 7.1 to 7.2
[2] W1 for each
[5]
$536^{\circ}[2] \mathrm{W} 1$ for $\mathrm{ACB}=54^{\circ}$
Angle in a semicircle is $90^{\circ}$
Angle between a tangent and a radius is $90^{\circ}$
$6 \quad$ Number (b) - Multiplying by 0.6 will give an answer
which is less than 12
Number (d) - Division by a number less than 25
will give an answer greater than 1

7
(a) 6.5
[2] M1 for $4 x-8=18$
(b) 12
[2] M1 for $2 x+3 x=60$
(c) 3
[2] M1 for $7 x-2 x=11+4$
[6]

## Section A total: $\mathbf{2 5}$

## SECTION B

8
(a) 2.925
(b) 3.465

9 (a) 60
[1]
(b) 190
[2] M1 for $57 \times 3 \frac{1}{3}$
[3]

10
(a) 2, 3, 4, 5, 6
[2] W1 for 3 correct
(b) $x<4$
[2] M1 for $5 x<18+2$
or W1 for $x=4$
[4]
$11 \quad 15.8$
[4] W3 for $\frac{790}{50}$
or M2 for use of
$\frac{\sum f x}{\sum f}$ or W1 for
790 seen or W1
for answer 10.8 or 20.8

## [4]

123300
[3] W2 for 9900 and
6600 seen
M1 for $24750 \div 45$
[3]
(a) 26.25
[2] M1 for $15 \times \frac{231}{132}$
(b) 107.8
[2] M1 for $132 \times \frac{12.25}{15}$
[4]
$14 \quad 1.3$ or 1.32
[4] W3 for 1.3 to 1.32
or M2 for
$\sqrt{3.60^{2}-3.35^{2}}$ or M1 for $3.62=x^{2}+3.35^{2}$
[4]
$15 \quad 2 \times 3 \times 5$
[1]
[1]

## Section B total: $\mathbf{2 5}$

Total mark available: 50


